پیش بینی مقدار تقاضای نفت خام در ایران با استفاده از مدل های شبکه عصبی مصنوعی(ann) و مقایسه آن با مدل های arimax
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه علامه طباطبایی - دانشکده علوم اقتصادی
- نویسنده نوید معرف زاده
- استاد راهنما محمد قلی یوسفی تیمور محمدی
- سال انتشار 1392
چکیده
هدف تحقیق مدل سازی و پیش بینی تقاضای نفت در ایران با استفاده از روش شبکه های عصبی مصنوعی(ann) می باشد. در این مقاله تلاش شده است تا یافته های تحقیق با استفاده از مدل مذکور با مدل arimax مقایسه گردد تا میزان دقت پیش بینی شبکه عصبی مورد ارزیابی علمی قرار گیرد. نتیجه مطالعه نشان می دهد که مدل شبکه عصبی مصنوعی از دقت بیشتری در پیش بینی تقاضای نفت خام ایران برخوردار است. همچنین در این مقاله متغیرهای تعیین کننده تقاضای نفت خام در کشور های منتخب عضو اوپک مورد مقایسه قرار گرفت تا مشخص گردد که آیا عوامل تعیین کننده تقاضای نفت خام ایران در سایرکشورها نیز مشابه است ؟ برای این کار از ضریب همبستگی رتبه ای اسپیرمن استفاده شده است، نتایج حاصل نشان می دهد مقدار این ضریب برای کشور های منتخب نسبت به ایران نزدیک به یک است که بر آن دلالت می کند که ، متغیر های استفاده شده در این تحقیق در سایر کشورهای مشابه نتایج یکسانی بدست داده است.درنتیجه می توان آنها را برای پیش بینی مقدار تقاضای نفت خام متغیرهای کلیدی در نظر گرفت.
منابع مشابه
پیش بینی مقدار تقاضای نفت خام در ایران با استفاده از شبکه های عصبی مصنوعی (ann) و مدل armax
هدف تحقیق مدلسازی و پیشبینی تقاضای نفت در ایران با استفاده از روش، شبکه عصبی مصنوعی (ann)، می باشد. در مقاله تلاش شده تا یافته های تحقیق با استفاده از مدل مذکور با مدل armax مقایسه گردد تا میزان دقت پیشبینی شبکه عصبی مورد ارزیابی علمی قرار گیرد. نتیجه مطالعه نشان می دهد که مدل شبکه عصبی مصنوعی از دقت بیشتری در پیش بینی تقاضای نفت خام ایران برخوردار است. همچنین در این مقاله متغیرهای تعیین ک...
متن کاملمدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی
شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...
متن کاملاستفاده از رهیافت های شبکه عصبی و مدل های خودرگرسیونی در پیش بینی رشد اقتصادی ایران
یکی از مسائل مهم در اقتصاد پیش بینی رشد اقتصادی می باشد که با توجه به اینکه، پیش بینی صحیح رشد اقتصادی، آثار مهمی در سیاست گذاری و برنامه ریزی های اقتصادی دولت دارد و می تواند علاوه بر ایجاد زمینهی توسعه روش های جدید پیش بینی، سیاست گذاران را در تصمیم گیری آتی یاری رساند، لذا هدف این مقاله پیش بینی رشد اقتصادی ایران با استفاده از سه مدل شبکه عصبی، میانگین متحرک خودرگرسیون تجمعی، خودرگرسیون وار...
متن کاملمدل سازی و پیش بینی کارایی بانک های دولتی و خصوصی ایران با استفاده از مدل های شبکه عصبی مصنوعی، شبکه عصبی فازی و الگوریتم ژنتیک
دستیابی به رشد مستمر و مداوم اقتصادی و به موجب آن توسعه اقتصادی را می توان از زمره اهدافی قلمداد نمود که تمام کشورها در پی دستیابی به آن می باشند. در این راستا بانک ها نقش بسیار مهمی در پیشرفت و توسعه اقتصادی هر کشور ایفا می نمایند. در حال حاضر با توجه به تعداد قابل توجه بانک های دولتی و خصوصی در کشور پیش بینی کارایی آن ها اهمیت ویژه ای پیدا کرده است. هدف از این پژوهش، مدلسازی و پیش بینی کارایی...
متن کاملپیش بینی تورم ایران با استفاده از مدل های ساختاری ، سری های زمانی و شبکه های عصبی
امروزه ، پیش بینی متغیر های کلان اقتصادی از اهمیت ویژه ای برای سیاستگذاران و سایر واحد های اقتصادی برخوردار است. در نتیجه ، دردهه های اخیر ، مدل های پیش بینی گوناگونی توسعه یافته و به رقابت با یکدیگر پرداخته اند. اخیراً به موازات مدل های متداول قبلی مانند مدل های ساختاری و سری زمانی ، مدل های دیگری تحت عنوان شبکه های عصبی مصنوعی در زمینه پیش بینی متغیر های مالی و پولی بکار گرفته شده اند. این م...
متن کاملپیش بینی نرخ خوردگی با استفاده از شبکه های عصبی مطالعه موردی: سیستم های بالاسری تقطیر نفت خام
هدف این تحقیق پیش بینی نرخ خوردگی با استفاده از شبکه های عصبی مصنوعی می باشد. خوردگی پدیده ای است که به علت تاثیر عوامل مختلف و متعدد شناخته شده و ناشناخته پیچیدگی بسیار زیادی دارد و به راحتی قابل مدلسازی نیست. جهت پیش بینی و مدلسازی خوردگی در رویکرد مکانیستیک به واکنش ها و فرایندهای فیزیکی، شیمیایی، و الکتروشیمیایی آن توجه می شود و مدلسازی بر اساس آنها انجام می پذیرد. با وجود موفقیت هایی که ای...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه علامه طباطبایی - دانشکده علوم اقتصادی
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023